UNSTEADY MOTION OF ROTATING RING OF VISCOUS
INCOMPRESSIBLE LIQUID WITH FREE BOUNDARY

V. O. Bytev

We examine the plane problem of rotationally symmetric motion of a rotating ring of
viscous incompressible liquid with free boundary. The theorem for the existence and
uniqueness of the problem solution is obtained. The qualitative properties of the solution
and its asymptotic behavior as t —« are studied.

1. Formulation of the Problem. Let a viscous liquid {ill at the initial moment the ring Ryy < r < Ry,
and have a given distribution, having rotational symmetry, of the radial and angular velocities,

We are required to study the inertial motion of the ring. The initial conditions have rotational sym-
metry, therefore it is natural to seek the solution of the problem in this class. It will be shown later that
the problem is uniquely solvable in this class.

Whether the problem has a solution not having axial symmetry is not known. As the mathematical
model of the motion we use the system of Navier-Stokes equations, which is to be solved in the region
t> 0, Ry(T) < r < Ry(t). Here r = Ry ,(t) are respectively the outer and inner boundaries of the ring, which
are initially unknown. The equation of continuity in polar coordinates d(rv,) /dr = 0 is easily integrated
and yields

v =170 (1) 1.1
Therefore the Navier-Stokes equations in polar coordinates can be written as

A A 1.2)

(1.3)

Here v = vj and p = 1, which does not impair the generality. We obtain the following edge conditions
from vanishing of the stress vector at the free boundary

2v @ 0
Tpp=—p— -
Ty = o — 2 _0 for = Ry,(t) ' 1.4)
r r
From (1.2) with the aid of (1.4) we find
Rﬁoidr_ (L _ 1 (2 PN _ 40, B
r you F) V- “T)‘.Tt S (1.5)
Ri(t)
We add the initial condition to (1.5)
O(0) = D,. (1.6)
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The kinematic condition at the free boundary

diR 01 @

a - R,0 1.7
yields the area integral
Rlz - R22 = H102 - Rzoza Rio =R, (0) (t=1,2)
The initial and edge conditions for (1.3) have the form
u(r, 0) = volr) (1.8)
a
s — =0, t=0, r=R,(1) (1.9)
We note that the moment of momentum conservation law is satisfied for (1.3)
R:(t) Ry
5 riv(r, t)dr = g riy, (rydr (1.10)
R R.o

In the obtained system of equations we convert to new independent variables and unknown functions
using the equations

_ P—R2() Rog?
n= Rao? ! t v T
N _ R2(y) _ o
V=g 10, E= joet = (1.11)

Moreover, we introduce the notation
a=R(2I'Ry2— 1

Then the problem (1.3), @.5)-(1.9) takes the form

6&) + . P 6@
tepge =4E +n) 5 ,,,lz 8 1.12)
O |z = @ (1) o<y (1.13)
do/n=0,1>0, n1=0,a (1.14)

2 ap (b —4) ¢
BTN TR 1+a/a)§°’2d" (1.15)
dg/ dv = 29, P(0) =, EO0) =1 (1.186)

We note that as a result of the replacement we can convert from a boundary problem with unknown
boundary to a problem in the fixed region{0 =7 = a,T = 0},

2. Radial Motion of the Ring. If w = 0, the problem (1.12)-(1.16) simplifies considerably and re-
duces to the Cauchy problem (1.15), (1.16),

Taking § as the independent variable in (1.15) and using (1.16), we have

dp _ dy df dp a(p—4)
dv  dE dv «p da ' 4 T 2%(E+en(d+a/E @.1)

Ple=1 = o @.2)
It will be shown later that the sign of d¢/dr for all T = 0 coincides with the sign of

dE

It = 2,

T=={)
The case ¢ = 0 describes an expanding ring, and §, < 0 describes a contracting ring.

Integrating (2.1) with the condition (2.2), we obtain
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- Wo—4 Vin{i+o
—4 W= Vinli+a
v * Vind +a/f) 2.3)

Let ¥, < 0, then for

e ]

the function ¢ vanishes and 0 < §£ 3‘ < 1 for any ¢4 < 0. This means that the ring contracts to a critical
radius. As a result of (1.16)
E(D)

1 ( ¢ _
“2‘31 = 2.4

It follows from (2.3) that the time for the ring to contract to the critical radius is infinite, and the ve-
locity approaches zero exponentially.

Let py > 0, which corresponds to expansion of the ring. Three cases are possible:
1) ;> 4,theny = O(‘f £). Then Ry(t) ~ t and the ring expansion rate is asymptotically constant;
2) if ) = 4, then = 4. In this case Ry(t) ~ V't and the rate expansion Ry ~ 1/Vt;

3) if P, < 4 then the ring expands after an infinite time to the critical radius and the rate of expan-
sion approaches zero exponentially;

3. A priori Estimates. Let £(7), ¥(T) be continuous functions and £ (1) > 0, then the solution w of the
problem (1.12)-(1.14) satisfies the following energy estimate

a ca
oM< gEray @1

CQ/JQ

For proof we multiply (1.12) by (§ +n)w. We obtain
A D e+ 0 0]+ Fe = b (G 0wl — & G 1),

Here &' = d¢ /dT = 2¥ in accordance with (1,16). Let us integrate this equality with respect to 77 from
0 to @. Using the edge conditions (1.14) and the nonnegativity of (§ + n)zw%, we obtain

{;§(§+n)m2dn+a'§m2dn<0

But

SR

’dn > ?:{—1_78 (& +m) 0%n
]

Therefore

%S(s+n)m2dn+ T §(§+n)w2dn<o

We introduce the notation

E+moerdn=J

Se~aa

Then by virtue of the nonnegativity of J we obtain from the last inequality

a

J< 3 (=4 (it + o (an) (3.2)

Since
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J>&{ o
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the required estimate is obtained, We note that for the solution w of the problems (1.12)-(1.14) the maxi-
mum principle in the following form is valid [2]. For any continuous £(7), §(1), £(7) > 0, [¢ |< the function
u = (§ +n)w reaches for an extremum either for T2 0,9 =0,a0r7=0,0=<7 =a,

Now let us establish a priori estimates for £ and . Let us examine the case 3, < 0. Taking £ as the
independent variable in (1.15), we obtain
@

dy ap p—4) 1 .
2“’75‘*&(&+a>1n(1+a/a)+1n(i+a/a)§‘°d“ (3.3)

In this case (2.1) is the majorizing equation for (3.3). We denote by ¥; the solution of (2.1) satisfying
the same initial condition as does ¥. On the basis of a Chaplygin type differential inequality we obtain
Py < 9. The derivatives

a dv =21, d&/dv =2
therefore
0 <& <i
As the minorant we can take § = 1, since dy /d¢ is bounded in the interval |£¥, 1],

Hence we conclude that for §, < 0 and any continuous wy(n) there exists £*, £§< &* =< 1 such that
P(*) = 0. We can obtain a more exact upper estimate for £* if we use the minorizing equation

a9 a@ (@ —4) . ac
X = R Taoudted  (EFomaATeD (3.4)

where C is defined by (3.2). This estimate is not written out because of its complexity. It can be shown
that for ¢, < 0 the rotating ring contracts to the critical radius after a finite time.

In fact, let § —~£*, then the first term in the right side of (3.3) approaches zero while the second
term approaches a finite, nonzero value, If it were equal to zero, then as a result of the maximum prin-
ciple for the function u = (¢ + n)w we find that w = 0.

Therefore 3 = O(Y £* _£) and the integral

£

t)
&,

V)

Ld B

converges as £ ~£*, Hence follows the statement to be proved.

In the case 3 = 0 the inequality (3.1) makes it possible to write the majorizing equation for (3.3);
(2.1) will be the minorizing equation. Thereby we obtain the a priori estimate |9 | = K(T) for (0, T) with
any T < . After the estimates for (3.1) are obtained, and also the estimates for ¥(T), we can turn to proof
of the theorem on existence and uniqueness.

4. Theorem on Existence and Uniqueness. For any continuous wy() and for any ¢, there exists a
unique solution of the problems (1.12)-(1.16) for all t = 0,

We shall present an abbreviated proof. We introduce the space C = C[0, T4y], whose elements are
continuous on [0, 7,] vector functions A{§ (1), #(r)} with the norm

IM] = maxs: {max|§ |, [y }

We specify A £(T), zpl(r)}, continuous on {0, T1], and we substitute &; and ¢; in place of £, in (1.12).
Then the function w is uniquely defined as the solution of the second boundary problem (1.12)-(1.14) ([2],
Chapter 5) and we have the estimate

a

lon< k() E>8>0

0
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From the value found for w we determine &, ¢ as the solution of the Cauchy problems (1.15), (1.16).
Thereby we determine the operator T which makes the pair of functions { ¢ 1 zpi} correspond to the pair of
of functions {£, ¥} . By virtue of the a priori estimates obtained for £, ¥ and also (3.1), this operator maps
the sphere || A=A, || < k of the space C[O, T4] onto itself. Here A, ={1, $,}. Moreover, T is a contracting
operator; this is easily achieved as a result of the smallness of 7y. It is clear that the existence of a sta-
tionary point of the operator T proves the theorem on the existence and uniqueness of the problem (1.12)-
(1.18) for sufficiently small 7y. The existence of a uniform 2 priori estimate for

a

§odn, &), v (1)

0

makes it possible to obtain by repeated application of these arguments the existence and uniqueness theorem
for the interval (0, T) withan T < ,

5. Qualitative Description of the Motion. We have obtained certain qualitative results: the ring al-
ways contracts to the critical radius after a finite time except for the case w = 0, In this case the contrac-
tion time is infinite, After the ring contracts to the critical radius it begins to expand. This case is more
complex.

Equation (3.4) is majorizing for (3.3) with £ = 1. Let us examine for it the Cauchy problem with the
initial condition (plgz1 =3y, This problem is solved explicitly

§ 20y _q In(t+a/y
T T {0

o
In view of their complexity the final equations are not written out. The following three cases are
possible,

First Case ¢ >4, Then ¢ = OO[E) as § o, If Py > 4 the minorant (2.3) behaves the same as § -,
therefore the solution as £ —« in this case is also § = O(‘f’é). Further

diR:(5)] ¥ E— Ry (1)
di TR )’ T Ry’

Consequently R,(t) = O(t) as t — .
Second Case C =4, Then:

a) if ¥, > 2, then as before
¢=0(VE for E— o
b) if 5 =2, then we find directly from (5.1)
Pp=2 o PE) <2
c) ifP,<2, then ¢ +2 as § — =, '
Third Case ¢ < 4, We introduce the notation b =vV4=C,
a) if $y>2 +b, then ¢ = O £) as £ ==

by if2—b< <2 + b, then @) is bounded
¢(E)—>2—b > for T o

¢) if ;< 2—b, then <p(§) —2—bh,however, while in the preceding case ¢(§) approached 2—b from
above, in this subcase it approaches from below.

For ¢ < 4 the minorant vanishes for some finite .
We shall show that the solution ¥ of (3.3) does not vanish for any finite £.

Let us examine (3.3). Let &; > 1 be the first value for which § = 0. As £ —~§; from the left we have
yp — +0, and the integral

S ®%dn — const >0
1}
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(The positivity of this limit follows from the maximum principle (see, Section 2), since otherwise w = 0),
On the other hand, the limit of the left side of (3.3) obviously cannot be positive as § —§;—0, which proves
the statement made.

We see from the preceding analysis that there are two qualitatively different expansion regimes. In
the first regime Ry(t) = Oft). This regime corresponds to expansion either for §; = 4 and any c, where ¥,
plays the role of the radial Reynolds number; for ¢ > 4 and any ¥, = 0, where c plays the role of the angu-
lar Reynolds number, or for ¢ = 4 and ¢, < 2. Such asymptotic bebavior is characteristic for the potential
motion of a rotating ideal liquid ring [3]. In the second regime R,(t) = OW't). This occurs either for Yy < 4,
c< 4or for P,< 2, c = 4.

In fact, in this case the solution of the majorizing equation is bounded for all t, therefore

d1R: ()] K N A
dr <R2 (t) ’ R'Z (t) - O (-'/t)
We note the following interesting fact. Let Ry, = 0, then the governing equations admit the stationary
solution

v=Qr, ©=0,p=—Y,QRR?—1r?)

which corresponds to rotation of the ring as a solid body, but it is sufficient to take Ry, # 0 even arbitrari-
ly small for the picture to change markedly: There are in general no stationary solutions other than

»p=0, ®=0, p=0

6. Motion of Idea] LiquidRing. Ovsyannikov [3] examined the potential motion of a rotating ideal
liquid ring. In the following we examine the more general case of vortical motion. For v = 0 the basic
equations simplify, and after replacing the independent variables and the unknown functions using the
equations

R () =Ry _ Ry )
§= Ryt 0 = Re? 7 U—‘Do v, W_al;-
they can be written in the form
du U
T +F,_+_1'|_ =0, U, 1) =Uym) 6.1)
d £E4a ¢ Rig?
d—E[W”n T]=§U2dn, Wiy = W, (azhz—zz—q (6.2)

Problems (6.1) and (6.2) are solved sequentially and yield

£ a

_wo () (t 1) ! ‘
UV="Srr W=ng a/a)[c°+§(§ Utdn) de].

Co=Weln(1 + a) — L <§ Uzdn) dEL=l

It is clear that for any continuous on [0, «] functions Uy(n) and &(T) < 1 there exists an 0 < £* < 1
such that w(*) = 0,

As &€ = &* we have
wE = KVE— 1 + 0E — %] (k= 0)
Considering that

g
_{ &
“§W(&)

we find that the ring contracts to the critical radius after a finite time. However, if Wy > 0, then W) =
O &) as £ —w. This means that R, (t) = Oft) as t — «, which is analogous to the asymptotic behavior of
the potential motion [3].
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